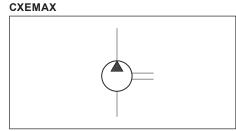


IGP 1

ШЕСТЕРЕННЫЕ НАСОСЫ С ВНУТРЕННИМ ЗАЦЕПЛЕНИЕМ **СЕРИЯ 10**

ПРИНЦИП ДЕЙСТВИЯ

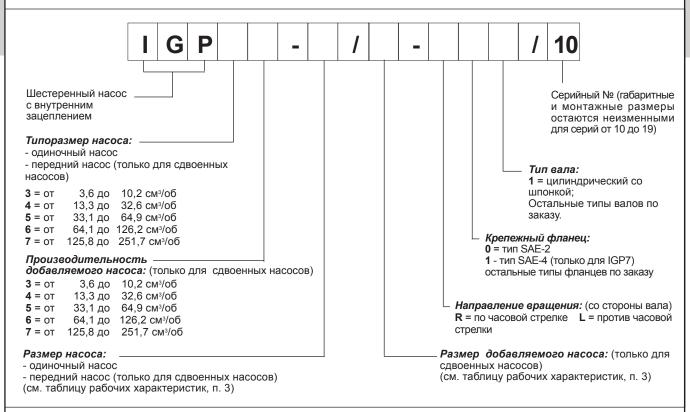

- Насосы IGP представляют собой насосы Насосы ТОР представляют сосой пассосовововыемного действия с шестернями внутреннего зацепления и поставляются в пяти типоразмерах, каждый из которых подразделяется по производительности.
- Насосы характеризуются высокой производительностью благодаря радиальной и осевой компенсации в соответствии с уровнем рабочего давления, а также низким уровнем
- Оптимальное распределение нагрузки и специальные подшипники скольжения обеспечивают непрерывную работу насосов при высоких давлениях и продолжительный срок их
- Насосы IGP также поставляются в различных вариантах исполнения для создания многосекционных насосов.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

НАСОСЫ типа IGP		3	4	5	6	7		
Диапазон производительности	см³/об	3,6 10,2	13,3 32,6	33,1 64,9	64,1 126,2	125,8 251,7		
Диапазон значений расхода (при 1500 об/мин)	л/мин.	5,4 15,3	19,9 48,9	49,6 97,3	96,1 189,3	188,7 377,5		
Диапазон значений рабочего давления	ий рабочего давления См. табл. 3 - рабочие характеристик							
Частота вращения		См. табл. 3 - рабочие характеристики						
Направление вращения		По ча	асовой стрелки	или против	(со стороны в	ала)		
Допустимая нагрузка на валу		О	братитесь в от	дел техничес	кой поддержкі	1		
Гидравлическое присоединение		Фланцевое по SAE J518 код 61 (см. п. 28)						
Тип крепления		Фланцевое по SAE J744 c						
Масса (одиночного насоса)	КГ	4 4,8	8,6 11	15,5 18,7	29,2 35	46,5 59		

Диапазон температур окружающей среды	°C —10 +60					
Диапазон температур рабочей жидкости	°C	-10 +80				
Диапазон вязкости рабочей жидкости	См. п. 2.2					
Рекомендуемая вязкость	сСт	25 100				
Допустимая степень загрязнения рабочей жидкости	См. п. 2.3					

ОБОЗНАЧЕНИЕ НА ГИДРАВЛИЧЕСКИХ



2/20

IGP CEPUS 10

1 - ИДЕНТИФИКАЦИОННЫЙ КОД

2 - ГИДРАВЛИЧЕСКИЕ ЖИДКОСТИ

2.1 - Тип жидкости

Используйте гидравлические жидкости на основе минеральных масел с добавлением применимых антивспенивателей и антиоксидантов.

По поводу использования других типов жидкостей учитывайте ограничения, приведенные в таблице ниже, или проконсультируйтесь в нашем отделе технической поддержки.

тип жидкости	ПРИМЕЧАНИЯ
HFC (водно-гликолевый раствор с содержанием воды не более 40%)	- Рабочие характеристики, приведенные в таблице п 3, необходимо уменьшить на 20% - Максимальная скорость потока жидкости на магистрали всасывания не должна превышать 1 м/с - Абсолютное давление всасывания должно быть не менее 0,8 бар (разрежение не более -0,2 бар) Максимальная температура жидкости должна быть до 50 °C
HFD (фосфатные эфиры)	Работа с данным типом жидкостей не допускается.

2.2 - Вязкость жидкости

Вязкость рабочей жидкости должна быть в следующих пределах:

минимальная вязкость 10 сСт при максимальной температуре жидкости 80 °C оптимальная вязкость 25 ... 100 сСт при рабочей температуре жидкости в резервуаре максимальная вязкость 2000 сСт ограничивается только фазой пуска насоса

При выборе типа жидкости убедитесь в том, что истинная вязкость жидкости при рабочей температуре находится в вышеуказанных пределах.

2.3 - Степень загрязнения

Максимальная степень загрязнения жидкости должна соответствовать классу чистоты 20/18/15 по ISO 4406:1999, поэтому рекомендуется использовать фильтр с $\beta_{20} \ge 75$. Для оптимального срока службы насоса рекомендуется, чтобы максимальная степень загрязнения соответствовала классу чистоты 18/16/13 по ISO 4406:1999, поэтому рекомендуется использовать фильтр с $\beta_{10} \ge 100$.

Если на магистрали всасывания устанавливается фильтр, убедитесь в том, что давление на входе насоса не ниже значений, указанных в примечании 1 следующего п. 3.

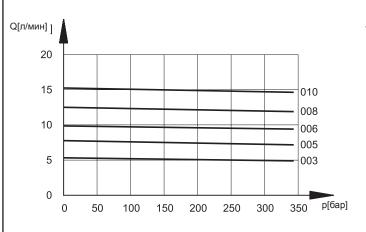
Фильтр магистрали всасывания должен быть оснащен байпасным клапаном и, по возможности, датчиком засорения.

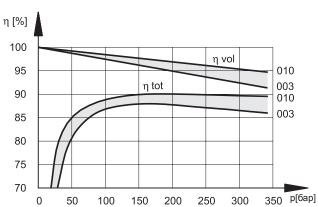
3 - РАБОЧИЕ ХАРАКТЕРИСТИКИ (получены при использовании минерального масла с вязкостью в диапазоне 25-100 сСт)

ТИПОРАЗМЕР НАСОСА	НОМИНАЛЬНЫЙ РАЗМЕР	ПРОИЗВОДИТЕЛЬ- НОСТЬ (см³/об) (прим. 2)	МАКСИМАЛЬНЫЙ РАСХОД(при 1500 об/мин) (л/мин)	при	ИЕ (бар) м. 3) иковое	МАКС. ЧАСТОТА ВРАЩЕНИЯ (об/ мин)	МИН. ЧАСТОТА ВРАЩЕНИЯ (об/ мин) (прим. 4)	
		0.0	F.4					
	003	3,6	5,4					
	005	5,2	7,8	+				
IGP3	006	6,4	9,6	330	345	3600	400	
	800	8,2	12,3					
	010	10,2	15,3					
	013	13,3	19,9			3600		
	016	15,8	23,7	330	345	3400		
IGP4	020	20,7	31,0			3200	400	
	025	25,4	38,1	300	330	3000		
	032	32,6	48,9	250	280	2800		
	032	33,1	49,6	315	245	3000		
IODE	040	41	61,5	313	345	2800	400	
IGP5	050	50,3	75,4	280	315	2500	400	
	064	64,9	97,3	230	250	2200		
	064	64,1	96,1	300	330	2600		
IGP6	080	80,7	121,0	280	315	2400		
IGPO	100	101,3	151,9	250	300	2100	400	
	125	126,2	189,3	210	250	1800		
	125	125,8	188,7	300	330	2200		
ICD7	160	160,8	241,2	280	315	2000		
IGP7	200	202,7	304,0	250	300	4000	400	
	250	251,7	377,5	210 250		1800		

- Прим. 1) В условиях непрерывной работы максимальное давление в магистрали всасывания не должно превышать 2 бара, а минимальное не должно быть меньше -0,2 бар. В течение непродолжительных периодов времени допускается падение давления до -0,4 бар (приводятся относительные величины давления).
- Прим. 2) Допуски рабочих параметров могут уменьшить фактическую производительность насоса не более, чем на 1,5%. Расход насоса, приведенный в таблице для частоты вращения 1500 об/мин, соответствует рабочему давлению 10 бар.
- Прим. 3) Приведенные выше постоянное и пиковое значения давления действительны для диапазона частот вращения 400-1500 об/мин. При частотах вращения, превышающих 1500 об/мин, величину допустимого пикового давления необходимо уменьшить.
- Прим. 4) При использовании насоса на переменных частотах вращения в диапазоне до 400 об/мин или свыше 1500 об/мин существуют ограничения на допустимые давления. По поводу использования насоса вне указанных в таблице диапазонов проконсультируйтесь в нашем отделе технической поддержки.

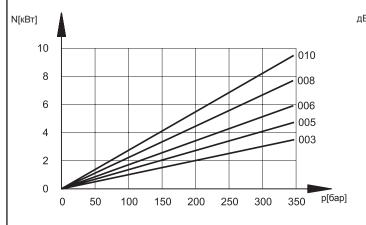
12 100/110 ED 3/20

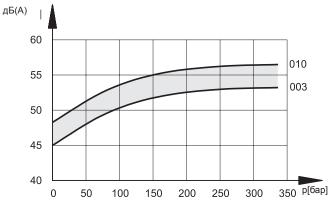



4- ДИАГРАММЫ ХАРАКТЕРИСТИК HACOCA IGP3 (значения получены для минерального масла с вязкостью 46 сСт при 40°C)

Данные, приведенные на графиках, получены при частоте вращения насоса 1500 об/мин.

ДИАГРАММЫ ЗАВИСИМОСТИ РАСХОДА ОТ ДАВЛЕНИЯ


ОБЪЕМНЫЙ И ОБЩИЙ КПД НАСОСА

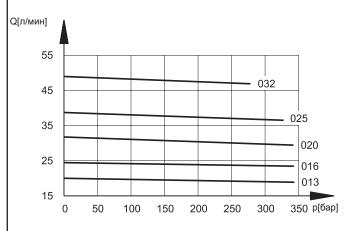


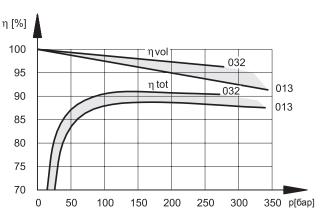
ПОТРЕБЛЯЕМАЯ МОЩНОСТЬ

УРОВЕНЬ ШУМА

Уровни звукового давления измерялись в частично звукоизолированном помещении на осевом расстоянии 1 м от насоса.

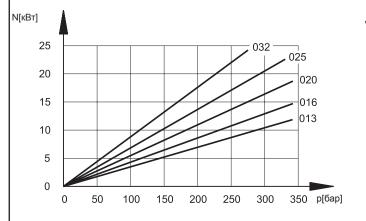
Для случая полностью звукоизолированного помещения приведенные здесь величины необходимо уменьшить на 5 дБ(A).

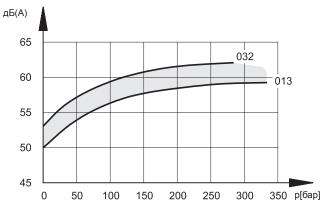



5-ДИАГРАММЫ ХАРАКТЕРИСТИК HACOCA IGP4 (значения получены для минерального масла с вязкостью 46 сСт при 40°С)

Данные, приведенные на графиках, получены при частоте вращения насоса 1500 об/мин.

ДИАГРАММЫ ЗАВИСИМОСТИ РАСХОДА ОТ ДАВЛЕНИЯ


ОБЪЕМНЫЙ И ОБЩИЙ КПД НАСОСА

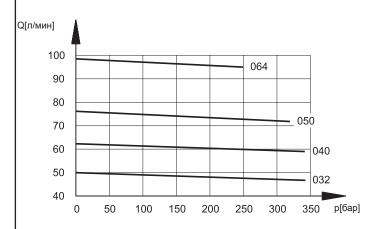


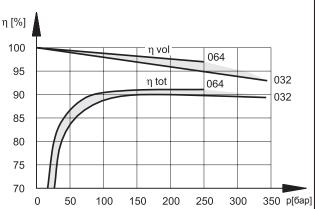
ПОТРЕБЛЯЕМАЯ МОЩНОСТЬ

УРОВЕНЬ ШУМА

Уровни звукового давления измерялись в частично звукоизолированном помещении на осевом расстоянии 1 м от насоса.

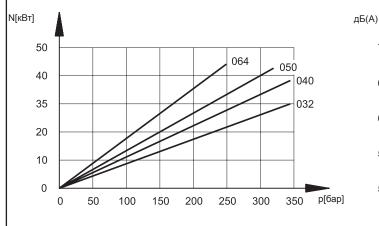
Для случая полностью звукоизолированного помещения приведенные здесь величины необходимо уменьшить на 5 дБ(A).

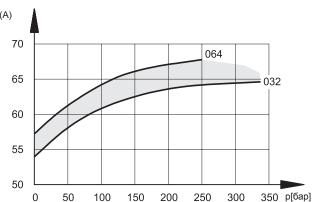



6- ДИАГРАММЫ ХАРАКТЕРИСТИК HACOCA IGP5 (значения получены для минерального масла с вязкостью 46 сСт при 40°С)

Данные, приведенные на графиках, получены при частоте вращения насоса 1500 об/мин.

ДИАГРАММЫ ЗАВИСИМОСТИ РАСХОДА ОТ ДАВЛЕНИЯ


ОБЪЕМНЫЙ И ОБЩИЙ КПД НАСОСА

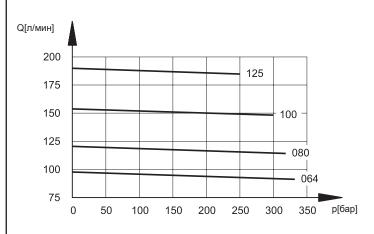


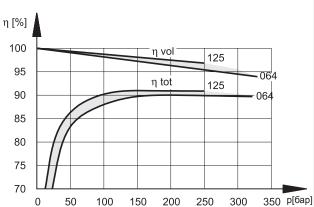
ПОТРЕБЛЯЕМАЯ МОЩНОСТЬ

УРОВЕНЬ ШУМА

Уровни звукового давления измерялись в частично звукоизолированном помещении на осевом расстоянии 1 м от насоса.

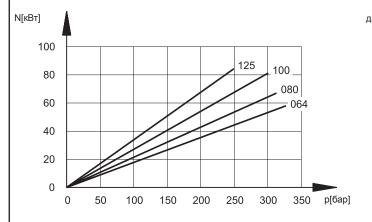
Для случая полностью звукоизолированного помещения приведенные здесь величины необходимо уменьшить на 5 дБ(A).

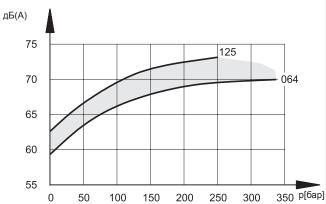



7- ДИАГРАММЫ ХАРАКТЕРИСТИК HACOCA IGP6 (значения получены для минерального масла с вязкостью 46 сСт при 40°С)

Данные, приведенные на графиках, получены при частоте вращения насоса 1500 об/мин.

ДИАГРАММЫ ЗАВИСИМОСТИ РАСХОДА ОТ ДАВЛЕНИЯ


ОБЪЕМНЫЙ И ОБЩИЙ КПД НАСОСА

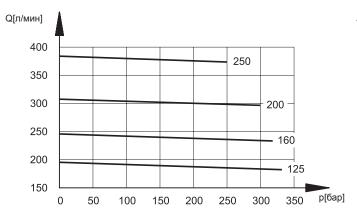


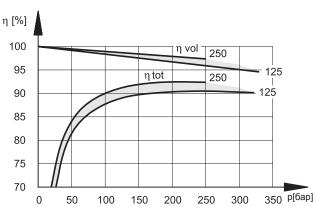
ПОТРЕБЛЯЕМАЯ МОЩНОСТЬ

УРОВЕНЬ ШУМА

Уровни звукового давления измерялись в частично звукоизолированном помещении на осевом расстоянии 1 м от насоса.

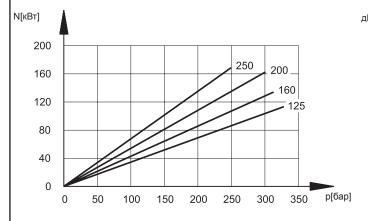
Для случая полностью звукоизолированного помещения приведенные здесь величины необходимо уменьшить на 5 дБ(A).

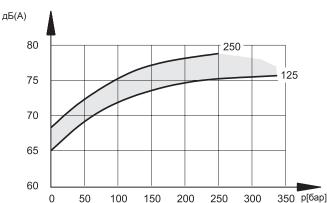



8- ДИАГРАММЫ ХАРАКТЕРИСТИК HACOCA IGP7 (значения получены для минерального масла с вязкостью 46 сСт при 40°С)

Данные, приведенные на графиках, получены при частоте вращения насоса 1500 об/мин.

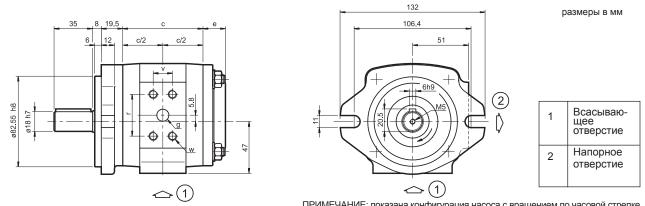
ДИАГРАММЫ ЗАВИСИМОСТИ РАСХОДА ОТ ДАВЛЕНИЯ


ОБЪЕМНЫЙ И ОБЩИЙ КПД НАСОСА

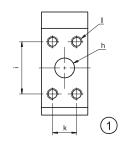


ПОТРЕБЛЯЕМАЯ МОЩНОСТЬ

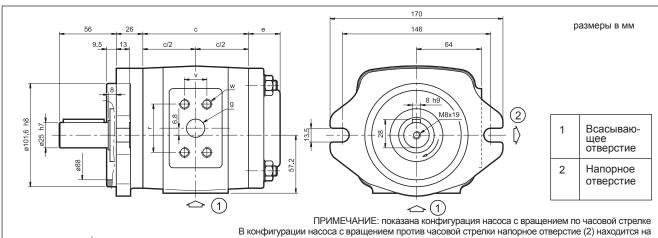
УРОВЕНЬ ШУМА


Уровни звукового давления измерялись в частично звукоизолированном помещении на осевом расстоянии 1 м от насоса.

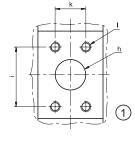
Для случая полностью звукоизолированного помещения приведенные здесь величины необходимо уменьшить на 5 дБ(A).


12 100/110 ED **8/20**

9- ГАБАРИТНЫЕ И МОНТАЖНЫЕ РАЗМЕРЫ НАСОСА IGP3

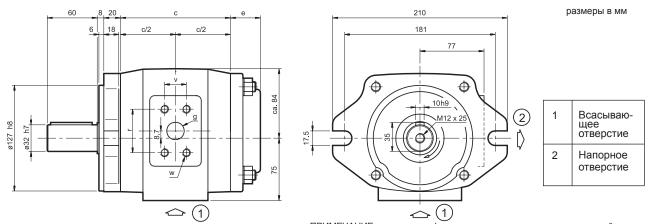


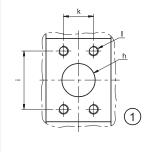
ПРИМЕЧАНИЕ: показана конфигурация насоса с вращением по часовой стрелке В конфигурации насоса с вращением против часовой стрелки напорное отверстие (2) находится на противоположной стороне насоса



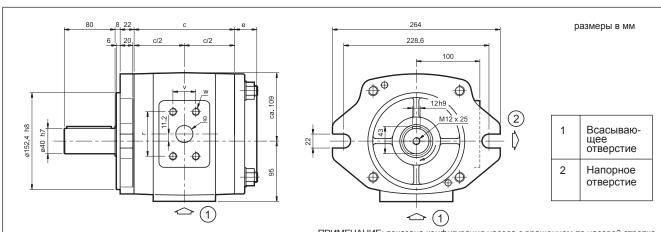
		КОД ПРИСОЕДИНИ- ТЕЛЬНОГО ФЛАНЦА (см. п. 28)										
	С	е	g	h	i	k	I	r	V	w	ПОДАЧА	ВСАСЫВАНИЕ
IGP3-003	66	20,5	9	14	38,1	17,5	M8x13	38,1	17,5	M8x13	0610718	0610718
IGP3-005	70	20,5	11	14	38,1	17,5	M8x13	38,1	17,5	M8x13	0610718	0610718
IGP3-006	73	20,5	11	19	47,5	22	M10x15	38,1	17,5	M8x13	0610718	0610719
IGP3-008	77,5	20,5	13	19	47,5	22	M10x15	38,1	17,5	M8x13	0610718	0610719
IGP3-010	82,5	20,5	13	21	52,4	26,2	M10x15	38,1	17,5	M8x13	0610718	0610713


10- ГАБАРИТНЫЕ И МОНТАЖНЫЕ РАЗМЕРЫ НАСОСА IGP4

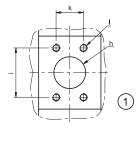

противоположной стороне насоса.


											КОД ПРИС ТЕЛЬНОГО ФЛ	СОЕДИНИ- ІАНЦА (см. п. 28)
	С	е	g	h	i	k	I	r	٧	W	ПОДАЧА	ВСАСЫВАНИЕ
IGP4-013	88,5	31	13	23	52,4	26,2	M10x15	38,1	17,5	M8x13	0610718	0610713
IGP4-016	92,5	31	14	25	52,4	26,2	M10x15	38,1	17,5	M8x13	0610718	0610713
IGP4-020	98	31	18	27	58,7	30,2	M10x15	47,5	22	M10x15	0610719	0610720
IGP4-025	104	31	18	30	58,7	30,2	M10x15	47,5	22	M10x15	0610719	0610720
IGP4-032	113	31	18	32	58,7	30,2	M10x15	47,5	22	M10x15	0610719	0610720

11- ГАБАРИТНЫЕ И МОНТАЖНЫЕ РАЗМЕРЫ НАСОСА IGP5



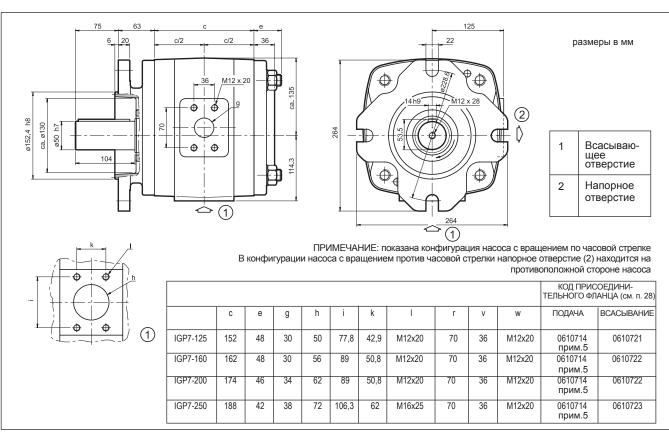
ПРИМЕЧАНИЕ: показана конфигурация насоса с вращением по часовой стрелке В конфигурации насоса с вращением против часовой стрелки напорное отверстие (2) находится на противоположной стороне насоса.



		КОД ПРИСОЕДИНИ- ТЕЛЬНОГО ФЛАНЦА (см. п. 28)										
	С	е	g	h	İ	k	I	r	٧	W	ПОДАЧА	ВСАСЫВАНИЕ
IGP5-032	119	36	18	32	58,7	30,2	M10x15	47,5	22	M10x15	0610719	0610720
IGP5-040	125	36	19	35	70	36	M12x20	52,4	26,2	M10x15	0610713	0610714
IGP5-050	132	36	21	40	70	36	M12x20	52,4	26,2	M10x15	0610713	0610714
IGP5-064	143	36	23	40	70	36	M12x20	52,4	26,2	M10x15	0610713	0610714

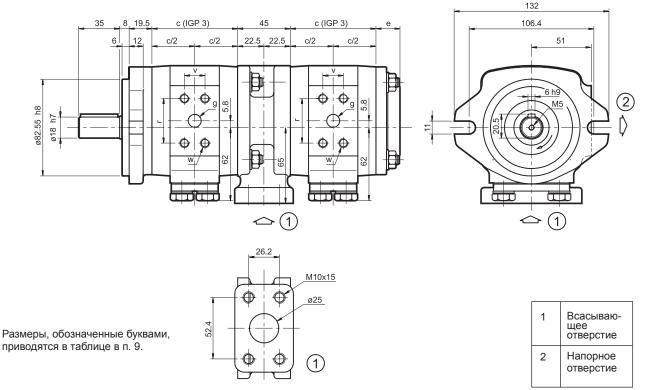
12- ГАБАРИТНЫЕ И МОНТАЖНЫЕ РАЗМЕРЫ НАСОСА IGP6

ПРИМЕЧАНИЕ: показана конфигурация насоса с вращением по часовой стрелке В конфигурации насоса с вращением против часовой стрелки напорное отверстие (2) находится на противоположной стороне насоса.

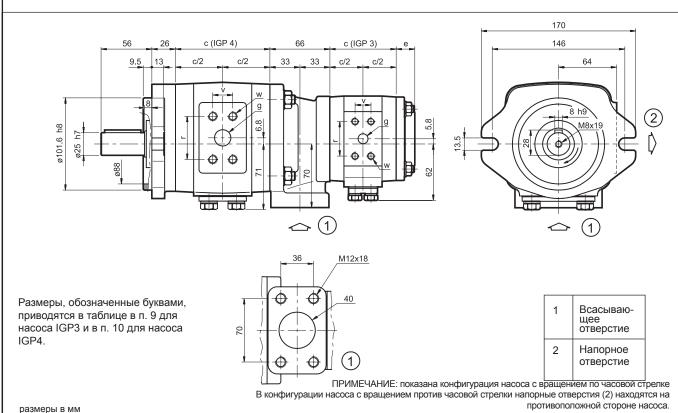


											КОД ПРИС ТЕЛЬНОГО ФЛ	ОЕДИНИ- АНЦА (см. п. 28)
	С	е	g	h	i	k	I	r	٧	W	ПОДАЧА	ВСАСЫВАНИЕ
IGP6-064	140	40	23	40	70	36	M12x20	52,4	26,2	M10x15	0610713	0610714
IGP6-080	148	35	23	45	77,8	42,9	M12x20	70	36	M12x20	0610714 прим.5	0610721
IGP6-100	158	35	27	50	77,8	42,9	M12x20	70	36	M12x20	0610714 прим.5	0610721
IGP6-125	170	40	30	50	77,8	42,9	M12x20	70	36	M12x20	0610714 прим.5	0610721

12 100/110 ED 10/20


13- ГАБАРИТНЫЕ И МОНТАЖНЫЕ РАЗМЕРЫ НАСОСА IGP7

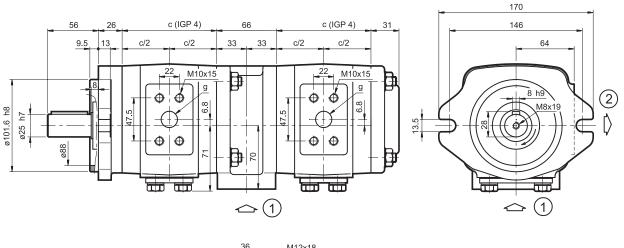
ПРИМЕЧАНИЕ 5: Если давление в напорной магистрали превышает 200 бар, необходимо использовать специальный соединительный фланец (код 0610725).


14- ГАБАРИТНЫЕ И МОНТАЖНЫЕ РАЗМЕРЫ СДВОЕННОГО НАСОСА IGP33

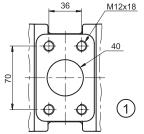
ПРИМЕЧАНИЕ: показана конфигурация насоса с вращением по часовой стрелке В конфигурации насоса с вращением против часовой стрелки напорные отверстия (2) находятся на противоположной стороне насоса.

размеры в мм

15- ГАБАРИТНЫЕ И МОНТАЖНЫЕ РАЗМЕРЫ СДВОЕННОГО НАСОСА IGP43

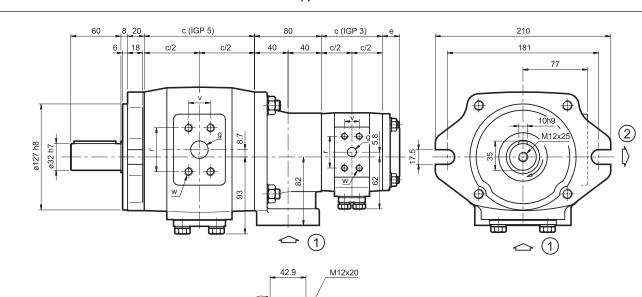


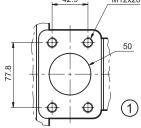
12 100/110 ED 12/20



16- ГАБАРИТНЫЕ И МОНТАЖНЫЕ РАЗМЕРЫ СДВОЕННОГО НАСОСА IGP44

Размеры, обозначенные буквами, приводятся в таблице в п. 10.


размеры в мм

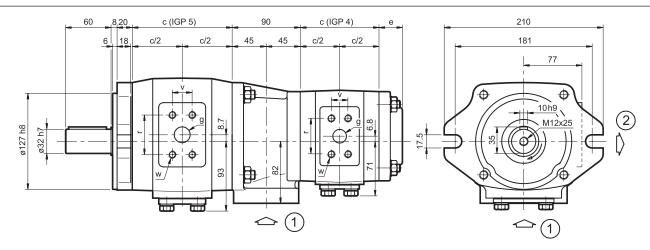

1 Всасывающее отверстие
2 Напорное отверстие

ПРИМЕЧАНИЕ: показана конфигурация насоса с вращением по часовой стрелке В конфигурации насоса с вращением против часовой стрелки напорные отверстия (2) находятся на

17- ГАБАРИТНЫЕ И МОНТАЖНЫЕ РАЗМЕРЫ СДВОЕННОГО HACOCA IGP53

Размеры, обозначенные буквами, приводятся в таблице в п. 9 для насоса IGP3 и в п. 11 для насоса IGP5.

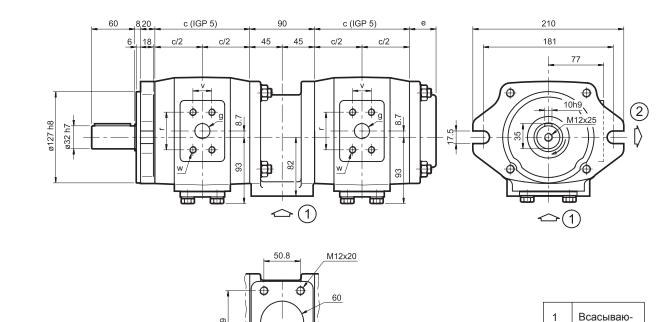
1 Всасывающее отверстие
2 Напорное отверстие


ПРИМЕЧАНИЕ: показана конфигурация насоса с вращением по часовой стрелке В конфигурации насоса с вращением против часовой стрелки напорные отверстия (2) находятся на противоположной стороне насоса.

размеры в мм

18- ГАБАРИТНЫЕ И МОНТАЖНЫЕ РАЗМЕРЫ СДВОЕННОГО НАСОСА IGP54

Размеры, обозначенные буквами, приводятся в таблице в п. 10 для насоса IGP4 и в п. 11 для насоса IGP5.


50.8 M12x20 89 Φ (1)

Всасывающее отверстие Напорное отверстие

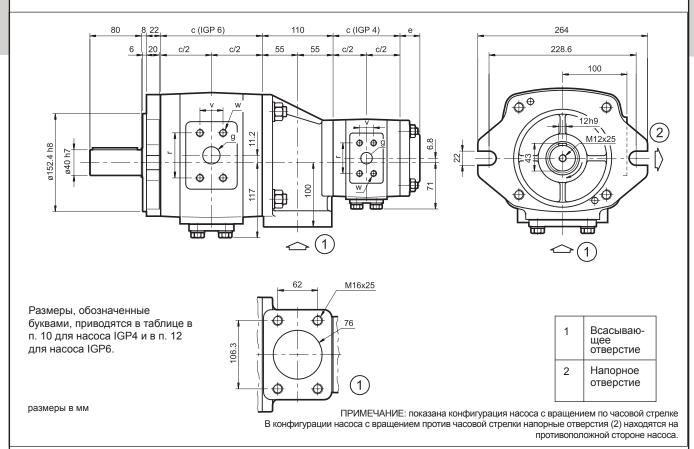
размеры в мм

ПРИМЕЧАНИЕ: показана конфигурация насоса с вращением по часовой стрелке В конфигурации насоса с вращением против часовой стрелки напорные отверстия (2) находятся на противоположной стороне насоса.

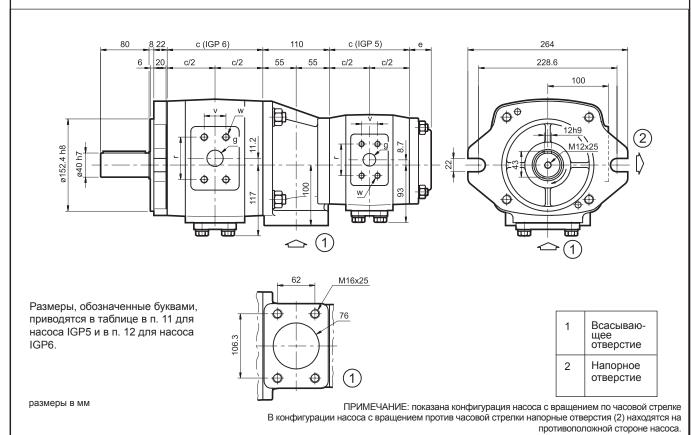
19- ГАБАРИТНЫЕ И МОНТАЖНЫЕ РАЗМЕРЫ ДВОЙНОГО HACOCA IGP55

Размеры, обозначенные буквами, приводятся в таблице в п. 11

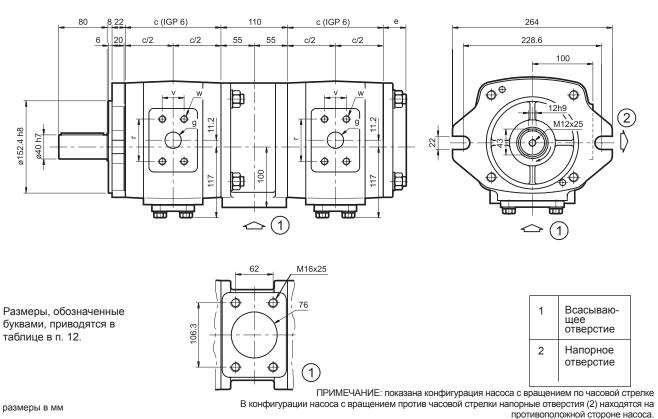
Ф (1)


отверстие Напорное отверстие

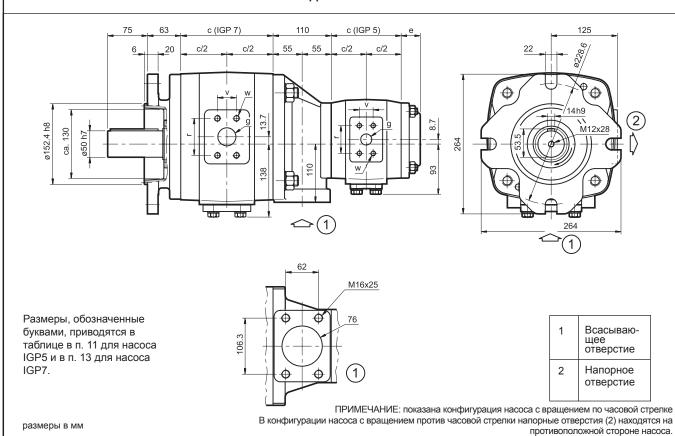
размеры в мм


ПРИМЕЧАНИЕ: показана конфигурация насоса с вращением по часовой стрелке В конфигурации насоса с вращением против часовой стрелки напорные отверстия (2) находятся на противоположной стороне насоса.

20- ГАБАРИТНЫЕ И МОНТАЖНЫЕ РАЗМЕРЫ СДВОЕННОГО НАСОСА IGP64

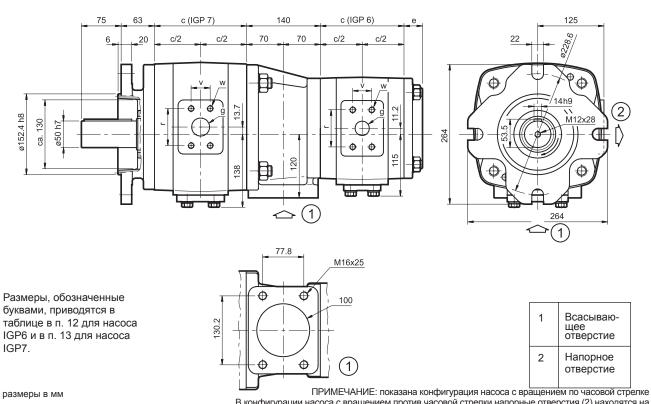


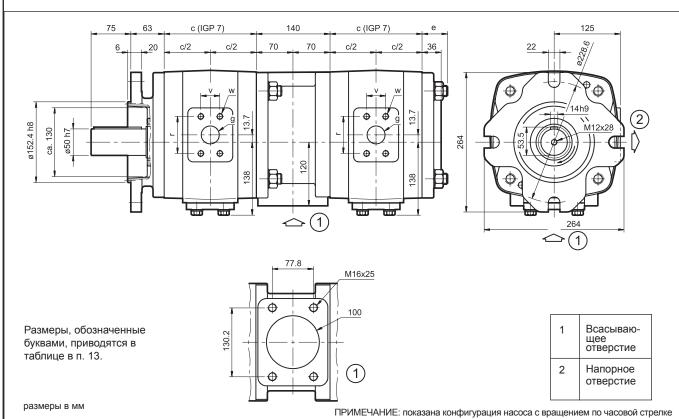
21- ГАБАРИТНЫЕ И МОНТАЖНЫЕ РАЗМЕРЫ СДВОЕННОГО НАСОСА ІСР65



22- ГАБАРИТНЫЕ И МОНТАЖНЫЕ РАЗМЕРЫ СДВОЕННОГО НАСОСА IGP66

23- ГАБАРИТНЫЕ И МОНТАЖНЫЕ РАЗМЕРЫ СДВОЕННОГО НАСОСА IGP75




стороне насоса.

24- ГАБАРИТНЫЕ И МОНТАЖНЫЕ РАЗМЕРЫ СДВОЕННОГО НАСОСА IGP76

В конфигурации насоса с вращением против часовой стрелки напорные отверстия (2) находятся на противоположной стороне насоса.

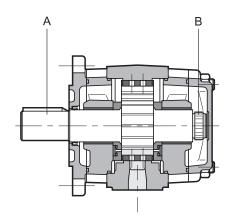
25- ГАБАРИТНЫЕ И МОНТАЖНЫЕ РАЗМЕРЫ СДВОЕННОГО НАСОСА IGP77

12 100/110 ED 17/20

В конфигурации насоса с вращением против часовой стрелки напорные отверстия (2) находятся на противоположной

26 - YCTAHOBKA

- Насосы IGP можно устанавливать с любой ориентацией приводного вала.
- Перед пуском насоса необходимо проверить соответствие направления вращения двигателя направлению, указанному стрелкой на корпусе насоса.
- Сечение магистрали всасывания необходимо выбирать таким образом, чтобы скорость потока рабочей жидкости не превышала 1 м/с (1,5 м/с при положительном давлении во всасывающем отверстии).
 - Пуск насоса, в особенности при низких температурах, необходимо производить без нагрузки (с включенной разрузкой насоса). Любые изгибы, сужения магистрали всасывания, а также ее чрезмерная длина, ухудшают работу насоса


Высота расположения всасывающего отверстия относительно дна бака должна быть не менее 50 мм.

- Насосы IGP являются самовсасывающими во всем диапазоне рабочих частот вращения. При первом пуске насоса необходимо выпустить воздух из напорной магистрали. Если на напорной магистрали установлен обратный клапан с давлением открытия более 1 бар, то при первом пуске насоса необходимо выпустить воздух из участка магистрали между обратным клапаном и насосом.
- Соединение насоса с двигателем должно осуществляться с использованием муфты, рассчитанной на компенсацию любых осевых и радиальных смещений. Не допускается применение муфт, которые приводят к возникновению осевых или радиальных нагрузок на вал насоса. Диаметр соединительной муфты необходимо выбирать с допуском К7.
- Характеристики и правила установки фильтров приводятся в п. 2.3.

12 100/110 ED 18/20

27 - МАКСИМАЛЬНЫЙ КРУТЯЩИЙ МОМЕНТ

ТИПОРАЗМЕР НАСОСА	МАКСИМАЛЬНЫЙ КРУТЯL ПЕРВЫЙ ВАЛ А	ЦИЙ МОМЕНТ НА ВАЛУ (Нм) ВТОРОЙ ВАЛ В
IGP3	160	80
IGP4	335	190
IGP5	605	400
IGP6	1050	780
IGP7	1960	1200

ПРИМЕЧАНИЕ: Насосы необходимо соединять в каскад в порядке уменьшения производительности и размера.

27.1 - Максимальный крутящий момент сдвоенных насосов

В случае сдвоенных насосов, даже если их производительность одинакова, каждый насос может работать на максимальных рабочих характеристиках, приведенных в п. 3.

27.2 - Максимальный крутящий момент многосекционных насосов

Крутящий момент (М) на входе каждого насоса определяется следующим выражением:

$$M = 9549.N = [HM]$$

n = частота вращения, об/мин

Q = величина расхода, л/мин

 Δp = перепад давления на насосе, бар

где потребляемая мощность определяется выражением: η tot = общий КПД насоса (определяется по относительным графикам в п. 4-5-6-7-8).

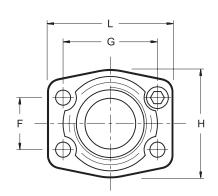
$$N = \frac{Q \cdot \Delta p}{600 \cdot n \text{ tot}} = [\kappa BT]$$

или рассчитывается по графикам ПОТРЕБЛЯЕМОЙ МОЩНОСТИ (см. п. 4-5-6-7-8).

В сборке из нескольких насосов к крутящему моменту каждого отдельного насоса необходимо прибавлять крутящий момент, потребляемый насосами, расположенными ниже по валу, при одновременном нагружении.

Величина крутящего момента, рассчитанная таким образом для каждого из насосов, должна быть меньше, чем относительная величина, приведенная в таблице выше, с учетом следующих условий:

1-й насос: см. значения, приведенные для первого вала А


2-й, 3-й, 4-й насосы: см. значения, приведенные для второго вала В

Если рассчитанные значения крутящего момента оказываются больше, чем приведенные в таблице, необходимо уменьшить рабочее давление или заменить насос, который оказывается перегруженным, на насос большего типоразмера, способный выдерживать такой крутящий момент.

размеры в мм

28 - СОЕДИНИТЕЛЬНЫЕ ФЛАНЦЫ SAE J518 с код 61

2

Код фланца	Тип фланца	Р макс бар	ØA	ØB	С	D	Е	F	G	Н	L	(1) 4 винта	(2) Уплотнительное кольцо
0610718	F080G012-M	345	1/2" BSP	13	16	36	15	17,48	38,10	48	58	M8 x 30	OR4075 (18,64X3,53)
0610719	F100G034-M	345	3/4" BSP	19	18	36	18	22,23	47,63	50	67		OR4100 (24,99X3,53)
0610713	F102G100-M	345	1" BSP	25	18	38	20	26,19	52,37	54	72	M10 x 35	OR4131 (32,93X3,53)
0610720	F104G114-M	275	1"1/4 BSP	31	21	41	22	30,18	58,72	70	81		OR4150 (37,69X3,53)
0610714	F106G112-M	200	1"1/2 BSP	38	25	44	24	35,71	69,85	78	95	M12 x 45	OR4187 (47,22X3,53)
0610725	SAE3-TB112	345	1"1/2 BSP	38	36	50	25	36	70	80	95	M12 x 55 12K	OR4187 (47,22X3,53)
0610721	F108G200-M	200	2" BSP	50	25	45	26	42,88	77,77	90	104		OR4225 (56,75X3,53)
0610722	F110G212-M	170	2"1/2 BSP	63	25	50	30	50,80	88,90	102	116	M12 x 45	OR4275 (69,44X3,53)
0610723	F112G300-M	135	3" BSP	73	27	50	30	61,93	106,4	124	134	M16 x 50	OR4337 (85,32X3,53)
0610726	F116G400-M	35	4" BSP	99	27	48	30	77,77	130,2	147	162	IVI TO X SU	OR4437 (110,72X3,53)

Соединительные фланцы поставляются в сборе с крепежными винтами и уплотнительным кольцом для всех моделей фланцев кроме SAE3-TB112. При заказе фланца SAE3-TB112 уплотнительное кольцо и крепежные винты заказываются отдельно.

DUPLOMATIC OLEODINAMICA SpA

ПРЕДСТАВИТЕЛЬСТВО В РОССИИ ООО "ПНЕВМАКС"

20025 LEGNANO(MI),p. le Bozzi 1/ Via Edison Tel.0331/472111-472236, Fax 0331/548328

mail@pneumax.ru

Телефон: (495) 739-39-99 Факс:(495) 739-49-99 www.pneumax.ru

КОПИРОВАНИЕ ЗАПРЕЩЕНО. КОМПАНИЯ ОСТАВЛЯЕТ ЗА СОБОЙ ПРАВО ВНОСИТЬ ИЗМЕНЕНИЯ В КАТАЛОГ.